A New Newton-Type Method with Third-Order for Solving Systems of Nonlinear Equations

Show more

References

[1] Ortega, J.M. and Rheinboldt, W.G. (1970) Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York.

[2] Traub, J.F. (1964) Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs, New Jer-sey.

[3] Darvish, M.T. and Barati, A. (2007) A Third-Order Newton-Type Method to Solve Systems of Nonlinear Equations. Applied Mathematics and Computation, 187, 630-635.

http://dx.doi.org/10.1016/j.amc.2006.08.080

[4] Frontini, M. and Sormani, E. (2004) Third-Order Methods from Quadrature Formulae for Solving Systems of Nonlinear Equations. Applied Mathematics and Computation, 149, 771-782.

http://dx.doi.org/10.1016/S0096-3003(03)00178-4

[5] Weerakoon, S. and Fernando, T.G.I. (2000) A Variant of Newton’s Method with Accelerated Third-Order Convergence. Applied Mathematics Letters, 13, 87-93.

http://dx.doi.org/10.1016/S0893-9659(00)00100-2

[6] Hafiz, M.A. and Bahgat, M.S.M. (2012) An Efficient Two-Step Iterative Method for Solving System of Nonlinear Equations. Journal of Mathematics Research, 4, 28-34.

[7] Darvish, M.T. and Barati, A. (2007) A Fourth-Order Method from Quadrature Formulae to Solve Systems of Nonlinear Equations. Applied Mathematics and Computation, 188, 1678-1685.

http://dx.doi.org/10.1016/j.amc.2006.11.022

[8] Noor, M.A. and Wasteem, M. (2009) Some Iterative Methods for Solving a System of Nonlinear Equations. Computers and Mathematics with Applications, 57, 101-106.

http://dx.doi.org/10.1016/j.camwa.2008.10.067

[9] Zhang, X. and Tan, J.Q. (2013) The Fifth-Order of Three-Step Iterative Methods for Solving Systems of Nonlinear Equations. Mathematica Numerica Sinica, 35, 297-304.